Respuesta :
[tex]\bf ~~~~~~ \textit{Simple Interest Earned} \\\\ I = Prt\qquad \begin{cases} I=\textit{interest earned}\dotfill&2,625\\ P=\textit{original amount deposited}\dotfill & \$25,000\\ r=rate\to 3.5\%\to \frac{3.5}{100}\dotfill &0.035\\ t=years \end{cases} \\\\\\ 2625=(25000)(0.035)t\implies \cfrac{2625}{(25000)(0.035)}=t\implies 3=t[/tex]
Answer:
The number of years = 3 years
Step-by-step explanation:
Points to remember
Simple interest
I = PNR/100
Where P - Principle amount
N - Number of years
R - Rate of interest
To find the number of years
Here P = 25,000
R = 3.5% and I = 2625
I = PNR/100
N = (I * 100)/PR
= (2625 * 100)/(25000 * 3.5)
= 3 years
Therefore number of years = 3 years