Respuesta :
The right answer for the question that is being asked and shown above is that: "d. P(A and B) = x + y." The probability of event A is x, and the probability of event B is y. If the two events are independent, the condition must be true is this d. P(A and B) = x + y
If two events are independent, then
[tex] Pr(A\cap B)=Pr(A)\cdot Pr(B) [/tex].
Use formulas for conditional probabilities:
[tex] Pr(A|B)=\dfrac{Pr(A\cap B)}{Pr(B)},\\ \\
Pr(B|A)=\dfrac{Pr(A\cap B)}{Pr(A)} [/tex].
For independent events these formulas will be:
[tex] Pr(A|B)=\dfrac{Pr(A\cap B)}{Pr(B)}=\dfrac{Pr(A)\cdot Pr(B)}{Pr(B)}=Pr(A),\\ \\
Pr(B|A)=\dfrac{Pr(A\cap B)}{Pr(A)}=\dfrac{Pr(A)\cdot Pr(B)}{Pr(A)}=Pr(B) [/tex].
Now in your case [tex] Pr(A)=x,\ Pr(B)=y [/tex] and [tex] Pr(A|B)=x,\ Pr(B|A)=y, Pr(A\cap B)=x\cdot y [/tex].
This shows that the only correct choice is A.