contestada

A car with a mass of 1,200 kilograms is moving around a circular curve at a uniform velocity of 20 meters per second. The centripetal force on the car is 6,000 newtons. what is the radius of the curve?

Respuesta :

The answer is 80 m.

Centripetal force (F) is a force that makes body move around a circular curve. The unit of force is N (N = kg * m/s²).
It can be represented as:
[tex]F= \frac{m* v^{2} }{r} [/tex]
where:
m - mass
v - velocity
r - radius of the curve

We have:
m = 1,200 kg
V = 20 m/s
F = 6,000 N = 6,000 kg * m/s²

We need radius of the curve:
r = ?

So, if [tex]F= \frac{m* v^{2} }{r} [/tex], then:
    [tex]r= \frac{3* v^{2} }{F} [/tex]
⇒ [tex]r = \frac{1200 kg * (20m/s)^{2} }{6000 kg*m/s^{2} } [/tex]
⇒ [tex]r= \frac{1200*400*kg*m^{2}*s^{2} }{6000kg*m/s^{2} } [/tex]
⇒ [tex]r= \frac{480,000m}{6000} [/tex]
⇒ [tex]r=80m[/tex]