Respuesta :

We have a right triangle:
hypotenuse=6
leg₁=5
leg₂=CD

Pythagoras theorem:
hypotenuse²=leg₁²+leg₂²

6²=5²+CD²

CD=√(6²-5²)
CD=√(36-25)
CD=√11≈3.3166....≈3.3

Answer: D. 3.3

Answer:

The length of the altitude CD is 3.3 units .

Option (D) is correct .

Step-by-step explanation:

By using the pythagorean theorem

Hypotenuse² = Perpendicular² + Base²

Now in ΔCDA

Hypotenuse = CA =  6 unit

Base = AD = 5 units

Perpendicular = CD

Put all the values in the above

6² = CD² + 5²

As

6² = 36

5² = 25

CD² = 6² - 5²

       = 36 - 25

CD² = 11

[tex]CD = \sqrt{11}[/tex]

CD = 3.3 unit (Approx)

Therefore the length of the altitude CD is 3.3 units .

Option (D) is correct .