contestada

A viscous liquid of constant density 500 kg/m3 and viscosity 10 Pa s falls down with constant velocity due to gravity in a long vertical tube with 2 m diameter. There is no pressure applied. Gravity is the only driving force. Calculate the shear stress at the wall.

Respuesta :

Answer:

[tex]\tau=[/tex]2452.5 N/m^2

Explanation:

given:

density [tex]\rho[/tex]=500kg/m^3

viscosity [tex]\mu[/tex]= 10 Pa-s

diameter of tube= 2 m

and L be length

since gravity is the only force shear force will balance it

so we can write

mg= [tex]\tau\times A[/tex]

A=  [tex]\rho\times\frac{\pi}{4} d^2\times L[/tex]

m=  [tex]\rho\times\frac{\pi}{4} d^2\times L[/tex]

therefore

[tex]\rho\times\frac{\pi}{4} d^2\times Lg= \tau\times{\pi} d\times L[/tex]

putting values we get

[tex]\ 500\times\frac{\pi}{4} 2^2\times g= \tau\times{\pi}\times 2[/tex]

calculating we get [tex]\tau=[/tex]2452.5 N/m^2