What are (a) the energy of a photon corresponding to wavelength 6.0 nm, (b) the kinetic energy of an electron with de Broglie wavelength 6.0 nm, (c) the energy of a photon corresponding to wavelength 6.0 fm, and (d) the kinetic energy of an electron with de Broglie wavelength 6.0 fm?

Respuesta :

Explanation:

Given that,

Wavelength = 6.0 nm

de Broglie wavelength = 6.0 nm

(a). We need to calculate the energy of photon

Using formula of energy

[tex]E = \dfrac{hc}{\lambda}[/tex]

[tex]E=\dfrac{6.63\times10^{-34}\times3\times10^{8}}{6.0\times10^{-9}}[/tex]

[tex]E=3.315\times10^{-17}\ J[/tex]

(b).  We need to calculate the kinetic energy of an electron

Using formula of kinetic energy

[tex]\lambda=\dfrac{h}{\sqrt{2mE}}[/tex]

[tex]E=\dfrac{h^2}{2m\lambda^2}[/tex]

Put the value into the formula

[tex]E=\dfrac{(6.63\times10^{-34})^2}{2\times9.1\times10^{-31}\times(6.0\times10^{-9})^2}[/tex]

[tex]E=6.709\times10^{-21}\ J[/tex]

(c). We need to calculate the energy of photon

Using formula of energy

[tex]E = \dfrac{hc}{\lambda}[/tex]

[tex]E=\dfrac{6.63\times10^{-34}\times3\times10^{8}}{6.0\times10^{-15}}[/tex]

[tex]E=3.315\times10^{-11}\ J[/tex]

(d). We need to calculate the kinetic energy of an electron

Using formula of kinetic energy

[tex]\lambda=\dfrac{h}{\sqrt{2mE}}[/tex]

[tex]E=\dfrac{h^2}{2m\lambda^2}[/tex]

Put the value into the formula

[tex]E=\dfrac{(6.63\times10^{-34})^2}{2\times9.1\times10^{-31}\times(6.0\times10^{-15})^2}[/tex]

[tex]E=6.709\times10^{-9}\ J[/tex]

Hence, This is the required solution.