Answer:
$29364.95
Step-by-step explanation:
The formula to apply is;
[tex]A=P(1+\frac{r}{n} )^{nt}[/tex]
where ;
A=amount at the end
P=principal amount
r=rate of interest as a decimal
n=number of compoundings a year
t=total number of years
Given in the question
A=$55000
t=8 years
n=2
r=0.08
P=?
Substitute the values in the equation;
[tex]A=P(1+\frac{r}{n} )^{nt} \\\\\\55000=P(1+\frac{0.08}{2} )^{8*2} \\\\\\55000=P(1+0.04)^{16} \\\\\\55000=P(1.04)^{16} \\\\\\55000=1.8729P\\\\\\\frac{55000}{1.8729} =\frac{1.8729P}{1.8729} \\\\\\29364.95=P[/tex]
Checking the answer
[tex]A=P(1+\frac{r}{n} )^{nt} \\\\\\A=29364.95(1+\frac{0.08}{2} )^{16} \\\\\\A=29364.95(1.04)^{16} \\\\\\A=55000[/tex]