You are testing the claim that the proportion of men who own cats is smaller than the proportion of women who own cats. You sample 160 men, and 25% own cats. You sample 120 women, and 20% own cats. Find the test statistic, rounded to two decimal places.

Respuesta :

Answer:

Given:You sample 160 men, and 25% own cats

          You sample 120 women, and 20% own cats.

To Find : Find the test statistic, rounded to two decimal places.

Solution:

You sample 160 men, and 25% own cats.

No. of men have cats = [tex]\frac{25}{100} \times 160[/tex]

                                    = [tex]40[/tex]

So, [tex]n_1=160 , y_1=40[/tex]

You sample 120 women, and 20% own cats.

No. of women have cats = [tex]\frac{20}{100} \times 120[/tex]

                                    = [tex]24[/tex]

So, [tex]n_2=120 , y_2=24[/tex]

We will use Comparing Two Proportions

[tex]\widehat{p_1}=\frac{y_1}{n_1}[/tex]

[tex]\widehat{p_1}=\frac{40}{160}[/tex]

[tex]\widehat{p_1}=0.25[/tex]

[tex]\widehat{p_2}=\frac{y_2}{n_2}[/tex]

[tex]\widehat{p_2}=\frac{24}{120}[/tex]

[tex]\widehat{p_2}=0.2[/tex]

Let [tex]p_1[/tex] and [tex]p_2[/tex] be the probabilities of men having cat and women having cat receptively

[tex]H_0:p_1=p_2\\H_a:p_1<p_2[/tex]

[tex]\widehat{p}=\frac{y_1+y_2}{n_1+n_2} =\frac{24+40}{160+120}=0.228[/tex]

Formula of test statistic : [tex]\frac{\widehat{p_1}-\widehat{p_2}}{\sqrt{\widehat{p}(1-\widehat{p})(\frac{1}{n_1}+\frac{1}{n_2})}}[/tex]

Substitute the values  

test statistic : [tex]\frac{0.25-0.2}{\sqrt{0.228(1-0.228)(\frac{1}{160}+\frac{1}{120})}}[/tex]

test statistic : [tex]0.986[/tex]

So, test statistic is 0.986