A ray of light strikes a flat block of glass (n = 1.50) of thickness 3.00 cm at an angle of 32.0° with the normal. Trace the light beam through the glass, and find the angles of incidence and refraction at each surface. If the angle of incidence at first surface is 32.0° (all angles are measured from the normal), determine the following angles.

Respuesta :

Answer:[tex]\theta =20.683^{\circ} angle\ of\ refraction[/tex]

Explanation:

Given

Refractive index of glass[tex]\left ( n_2\right )=1.5[/tex]

Angle of incidence [tex]=32^{\circ}[/tex]

Using snell's law

[tex]n_1sin\left ( 32\right )=n_2sin\left ( \theta \right )[/tex]

where [tex]\theta =angle of refraction[/tex]

[tex]1\cdot sin\left ( 32\right )=1.5\cdot sin\left ( \theta \right )[/tex]

[tex]sin\theta =\frac{2\times sin32}{3}[/tex]

[tex]\theta =20.683^{\circ}[/tex]

Similarly ray incident on other side of glas with angle of incidence equals to [tex]\theta [/tex]

and angle of emergence [tex]=31.98 \approx 32[/tex]