Respuesta :
Answer:
Two questions:
Question 1: [tex]f^{-1}(x)=?[/tex] given [tex]f(x)=\frac{2}{x}-3[/tex].
Answer 1: [tex]f^{-1}(x)=\frac{2}{x+3}[/tex]
Question 2: [tex]f^{-1}(x)=?[/tex] given [tex]f(x)=\frac{2}{x-3}[/tex].
Answer 2: [tex]f^{-1}(x)=\frac{2}{x}+3[/tex]
Step-by-step explanation:
So [tex]f^{-1}[/tex] is used in most classes to represent the inverse function of [tex]f[/tex].
The inverse when graphed is a reflection through the y=x line. The ordered pairs [tex](a,b)[/tex] on [tex]f[/tex] implies [tex](b,a)[/tex] are on [tex]f^{-1}[/tex].
This means we really just need to swap x and y.
Since we want to write as a function of x we will need to solve for y again.
Question 1:
[tex]y=\frac{2}{x}-3[/tex]
Swap x and y:
[tex]x=\frac{2}{y}-3[/tex]
We want to solve for y.
Add 3 on both sides:
[tex]x+3=\frac{2}{y}[/tex]
Make the left hand side a fraction so we can cross-multiply:
[tex]\frac{x+3}{1}=\frac{2}{y}[/tex]
Cross multiply:
[tex]y(x+3)=1(2)[/tex]
Simplify right hand side:
[tex]y(x+3)=2[/tex]
Divide both sides by (x+3):
[tex]y=\frac{2}{x+3}[/tex]
So [tex]f^{-1}(x)=\frac{2}{x+3}[/tex].
Question 2:
[tex]y=\frac{2}{x-3}[/tex]
Swap x and y:
[tex]x=\frac{2}{y-3}[/tex]
Make left hand side a fraction so we can cross multiply:
[tex]\frac{x}{1}=\frac{2}{y-3}[/tex]
Cross multiply:
[tex](y-3)x=1(2)[/tex]
We have to distribute here:
[tex]yx-3x=2[/tex]
Add 3x on both sides:
[tex]yx=2+3x[/tex]
Divide boht sides by x:
[tex]y=\frac{2+3x}{x}[/tex]
You could probably stop here but you could also simplify a little.
Separate the fraction into two terms since you have 2 terms on top bottom being dividing by x:
[tex]y=\frac{2}{x}+\frac{3x}{x}[/tex]
Simplify second fraction x/x=1:
[tex]y=\frac{2}{x}+3[/tex]
So [tex]f^{-1}(x)=\frac{2}{x}+3[/tex].