Answer:
a) [tex]b^2-4ac[/tex]
b) 25
Step-by-step explanation:
a) The quadratic formula is [tex]x=\frac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex].
The portion under the radical sign ([tex]b^2-4ac[/tex]) is called the discriminant or determinant.
It tells us that, the quadratic equation can be solved by factoring, if its value is a perfect square.
b) The given quadratic equation is [tex]2x^2+7x+3=0[/tex].
By comparing to [tex]ax^2+bx+c=0[/tex], we have a=2, b=7, and c=3
We substitute these values to get:
[tex]b^2-4ac=7^2-4(2)(3)[/tex]
[tex]b^2-4ac=49-24[/tex]
[tex]b^2-4ac=25[/tex]