Respuesta :

Answer:

Proof provided in the explanation.

Step-by-step explanation:

[tex]\cos^4(\theta)-\sin^4(\theta)+1[/tex]

I'm going to rewrite that middle term so I can apply Pythagorean Identity, [tex]\sin^2(\theta)=1-\cos^2(\theta)[/tex]:

[tex]\cos^4(\theta)-(\sin^2(\theta))^2+1[/tex]

[tex]\cos^4(\theta)-(1-\cos^2(\theta))^2+1[/tex]

Use [tex](a+b)^2=a^2+2ab+b^2[/tex]:

[tex]\cos^4(\theta)-[1-2\cos^2(\theta)+\cos^4(\theta)]+1[/tex]

Distribute:

[tex]\cos^4(\theta)-1+2\cos^2(\theta)-\cos^4(\theta)+1[/tex]

Combine like terms:

[tex]\cos^4(\theta)-\cos^4(\theta)-1+1+2\cos^2(\theta)[/tex]

Applying inverse property of addition:

[tex]0+0+2\cos^2(\theta)[/tex]

Applying identity property of addition:

[tex]2\cos^2(\theta)[/tex]

To prove cos^4x-sin^4x +1= 2 cos^2 x

cos^4x -sin^4 x+1

= ( cos^2x +sin^2x)(cos^2x - sin^2x) +1

You need to remember 3 basic results

sin^2x + cos^2x= 1

cos2x = cos^2x - sin^2x

1+ cos 2x = 2 cos^2x

Now Let's revert back to question

= ( cos^2x + sin^2x )( cos^2x - sin^2x) +1

= 1( cos2x) +1

= cos2x +1

= 2 cos^2x