A circle is centered at the point (-3, 2) and passes through the point (1, 5). The radius of the circle is ___ units. The point (-7,__ ) lies on this circle.

Respuesta :

Answer:

The radius is 5 units

(-7,-1) and (-7,5) lies on the circle

Step-by-step explanation:

Use the distance formula to find the distance between the center and the given point that gives you the radius.

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

The center is (-3,2) and the point on the circumference is (1,5)

[tex]r=\sqrt{(1--3)^2+(5-2)^2}[/tex]

[tex]r=\sqrt{(4)^2+(3)^2}[/tex]

[tex]r=\sqrt{16+9}[/tex]

[tex]r=\sqrt{25}[/tex]

[tex]\therefore r=5[/tex]

The radius is 5 units.

The equation of the circle is given by:

[tex](x--3)^2+(y-2)^2=5^2[/tex]

[tex](x+3)^2+(y-2)^2=25[/tex]

When x=-7, we obtain y by substituting into the equation of the circle:

[tex](-7+3)^2+(y-2)^2=25[/tex]

[tex](-4)^2+(y-2)^2=25[/tex]

[tex]16+(y-2)^2=25[/tex]

[tex](y-2)^2=25-16[/tex]

[tex](y-2)^2=9[/tex]

[tex]y-2=\pm \sqrt{9}[/tex]

[tex]y=2\pm 3[/tex]

[tex]y=-1[/tex] or y=5

Therefore (-7,-1) and (-7,5) lies on the circle.