Respuesta :

Answer:

see explanation

Step-by-step explanation:

Given

A = 80[tex]e^{-kt}[/tex] ← initial amount is 80

The amount is halved in 1.5 days, hence

(a)

80[tex]e^{-1.5k}[/tex] = 40 ( divide both sides by 80 )

[tex]e^{-1.5k}[/tex] = 0.5

Take the natural log of both sides

ln [tex]e^{-1.5k}[/tex] = ln 0.5, thus

-1.5k ln e = ln 0.5 ← ln e = 1

- 1.5k = ln 0.5 ( divide both sides by - 1.5 )

k = [tex]\frac{ln0.5}{-1.5}[/tex] = 0.462 ( 3 dec. places )

------------------------------------------------------------------------

(b)

80[tex]e^{-0.462t}[/tex] = 5 ( divide both sides by 80 )

[tex]e^{-0.462t}[/tex] = 0.0625

Take the natural log of both sides

ln [tex]e^{-0.462t}[/tex] = ln 0.0625

- 0.462t = ln 0.0625 ( divide both sides by - 0.462

t = [tex]\frac{ln0.0625}{-0.462}[/tex] ≈ 6 days

-----------------------------------------------------------------------

(c)

80 [tex]e^{-0.642(9)}[/tex] = 80 × [tex]e^{-4.158}[/tex] ≈ 1.25 g