Respuesta :
Answer:
W = 0.483 x 10^10 J
Explanation:
M = mass of mars = 6.39 x 10^23 kg
m = mass of spacecraft = 5000 kg
R = radius of mars = 3.4 x 10^6 m
hi = initial height = 2000 km = 2 x 10^6 m
hf = final height = 4000 km = 4 x 10^6 m
ri = initial distance from center of mars
ri = R + hi
[tex]ri = 3.4 x 10^6 + 2 x 10^6 = 5.4 x 10^6 m[/tex]
rf = final distance from center of mars
rf = R + hf
[tex]rf = 3.4 x 10^6 + 4.00 x 10^6 = 7.4 x 10^6 m[/tex]
Total energy at an altitude of ''r'' is given as :;
[tex]E = \frac{-GMm}{2r}[/tex]
Energy at height ''ri''
[tex]Ei = -\frac{(6.67 x 10^{-11}) (6.39 x 10^{23} ) (5000)}{2*5.4 x 10^6}[/tex]
Ei = -1.973 x 10^10 J
Energy at height ''rf''
[tex]Ef = -\frac{(6.67 *10^{-11}) (6.39 *10^{23} ) (5000)}{(2*7.4 *10^6)}[/tex]
Ef = - 1.439*10^10 J
work done is given as ::
W = (- 1.439*10^10 J) - (-1.973 x 10^10) J
W = 0.483 x 10^10 J