Respuesta :
Answer:
The total angular momentum of the system is [tex]217.46\ kg-m^2/s[/tex].
Explanation:
Given that,
Angular speed = 0.841 rad/s
Mass of platform = 72.1 kg
Speed = 1.17 m/s
Mass of poodle = 20.3 kg
Mass of mutt = 18.5 kg
Distance =3/4 of the platform's radius from the center
Mass of disk = 92.5 kg
radius = 1.87 m
Angular momentum is the product of moment of inertia and angular speed.
We need to calculate the angular momentum of person
[tex]L_{person} = I\omega[/tex]
[tex]L_{person}=\dfrac{1}{2}mr^2\times\omega[/tex]
[tex]L_{person}=\dfrac{1}{2}\times72.1\times(\dfrac{v}{\omega})^2\times\omega[/tex]
[tex]L_{person}=\dfrac{1}{2}\times72.1\times(\dfrac{1.17}{0.841})^2\times0.841[/tex]
[tex]L_{person}=58.679\ kg m^2/s [/tex]
We need to calculate the angular momentum of platform
[tex]L_{platform}=\dfrac{1}{2}mr^2\times\omega[/tex]
Put the value into the formula
[tex]L_{platform}=\dfrac{1}{2}\times92.5\times1.87^2\times0.841[/tex]
[tex]L_{platform}=136.02\ kg m^2/s[/tex]
We need to calculate the angular momentum of poodle
[tex]L_{poodle}=\dfrac{1}{2}mr^2\times\omega[/tex]
Put the value into the formula
[tex]L_{poodle}=\dfrac{1}{2}\times20.3\times(\dfrac{1.87}{2})^2\times0.841[/tex]
[tex]L_{poodle}=7.4625\ kg m^2/s[/tex]
We need to calculate the angular momentum of mutt
[tex]L_{mutt}=\dfrac{1}{2}mr^2\times\omega[/tex]
[tex]L_{mutt}=\dfrac{1}{2}\times18.5\times(\dfrac{3}{4}\times1.87)^2\times0.841[/tex]
[tex]L_{mutt}=15.302\ kg m^2/s[/tex]
We need to calculate the total angular momentum
[tex]L=L_{person}+L_{platform}+L_{poodle}+L_{mutt}[/tex]
[tex]L=58.679+136.02+7.4625+15.302[/tex]
[tex]L=217.46\ kg-m^2/s[/tex]
Hence, The total angular momentum of the system is [tex]217.46\ kg-m^2/s[/tex].