Use the given degree of confidence and sample data to find a confidence interval for the population standard deviation sigma. Assume that the population has a normal distribution. Round the confidence interval limits to the same number of decimal places as the sample standard deviation. The mean replacement time for a random sample of 20 washing machines is 11.6 years and the standard deviation is 2.8 years. Construct a​ 99% confidence interval for the standard​ deviation, sigma​, of the replacement times of all washing machines of this type.

Respuesta :

Answer: [tex]1.97<\sigma<4.67[/tex]

Step-by-step explanation:

The confidence interval for population standard deviation is given by :-

[tex]s\sqrt{\dfrac{(n-1)}{\chi^2_{n-1,\alpha/2}}}<\sigma<s\sqrt{\dfrac{(n-1)}{\chi^2_{n-1,1-\alpha/2}}}[/tex]

Given : Sample size : [tex]n=20[/tex]

Standard deviation : [tex]s=2.8\text{ years}[/tex]

Significance level : [tex]\alpha: 1-0.99=0.01[/tex]

Critical value using chi-square distribution table :

[tex]\chi^2_{n-1,\alpha/2}=\chi^2_{19,0.005}=38.58[/tex]

[tex]\chi^2_{n-1,1-\alpha/2}=\chi^2_{19,0.995}=6.84[/tex]

Then , 99% confidence interval for the standard​ deviation of the replacement times of all washing machines of this type will be :

[tex]2.8\sqrt{\dfrac{(19)}{38.58}}<\sigma<2.8\sqrt{\dfrac{(19)}{6.84}}\\\\\\=1.9649600278<\sigma<4.66666666667\\\\\approx1.97<\sigma<4.67[/tex]