Answer: A) [tex]6.38(10)^{6} m[/tex]
Explanation:
The equation for the moment of inertia [tex]I[/tex] of a sphere is:
[tex]I=\frac{2}{5}mr^{2}[/tex] (1)
Where:
[tex]I=9.74(10)^{37}kg m^{2}[/tex] is the moment of inertia of the planet (assumed with the shape of a sphere)
[tex]m=5.98(10)^{24}kg[/tex] is the mass of the planet
[tex]r[/tex] is the radius of the planet
Isolating [tex]r[/tex] from (1):
[tex]r=\sqrt{\frac{5I}{2m}}[/tex] (2)
Solving:
[tex]r=\sqrt{\frac{5(9.74(10)^{37}kg m^{2})}{2(5.98(10)^{24}kg)}}[/tex] (3)
Finally:
[tex]r=6381149.077m \approx 6.38(10)^{6} m[/tex]
Therefore, the correct option is A.