Respuesta :
Answer: Sinθ = 1/√10 = √10/10
Cosθ = -3/√10 = - 3√10/10
Tanθ = 1/-3 = -1/3
Step-by-step explanation:
The length of the hypotenuse = √(-3^2 +1^2) = √10
The point -3,1 tell us the length of y is 1 and the length of x is 3.
This would make opposite = 1 and adjacent = -3
Sinθ = opposite/hypotenuse = 1/√10 = √10/10
Cosθ = adjacent/hypotenuse = -3/√10 = - 3√10/10
Tanθ = opposite/adjacent = 1/-3 = -1/3
Hence, the value of sine , cosine and tangent are 1/[tex]\sqrt{10\\}[/tex] , -3/[tex]\sqrt{10}[/tex] and -1/3.
What is terminal side of an angle ?
The terminal side of an angle is the side which is not the initial side.
What is the value of sine, cosine and tangent in a triangle?
Let the perpendicular be x , base be y then hypotenuse be [tex]\sqrt{x^{2}+ y^{2} }[/tex].
Then the value of sine=x/[tex]\sqrt \ x^{2}+y^{2}[/tex] , cosine=y/[tex]\sqrt \ x^{2}+y^{2}[/tex] , tangent= x/y.
How to solve?
Since theta is the terminal side of an angle , the value of perpendicular in this triangle is 1 , the value of base is 3 and the value of hypotenuse is [tex]\sqrt{10}[/tex].
In the second quadrant sine is positive and cosine and tangent is negative.
Sine=[tex]\frac{perpendicular}{hypotenuse}[/tex]= 1/[tex]\sqrt{10}[/tex]
cosine=[tex]\frac{base}{hypotenuse}[/tex]= -3/[tex]\sqrt{10}[/tex]
tangent=[tex]\frac{perpendicular}{base}[/tex]= -1/3
Hence, the value of sine , cosine and tangent are 1/[tex]\sqrt{10\\}[/tex] , -3/[tex]\sqrt{10}[/tex] and -1/3.
Learn more about terminal side and trigonometric functions0
https://brainly.com/question/10580887
#SPJ2