Answer:t=8.16 s
Explanation:
Given
[tex]\theta =30.8[/tex]
Steady Force [tex]\left ( F\right )=105 N[/tex]
Friction force[tex]\left ( f\right )=0.15\times 65\times 9.81\times cos\left ( 30.08\right )[/tex]
f=82.766 N
Using FBD
[tex]F+mgsin\theta -f=ma[/tex]
[tex]105+65\times 9.81\times sin\left ( 30.08\right )-82.766=65\left ( a\right )[/tex]
[tex]105+319.6-82.766=65\left ( a\right )[/tex]
[tex]a=5.25 m/s^2[/tex]
time to reach bottom
[tex]s=ut+\frac{1}{2}at^2[/tex]
[tex]175=0\left ( t\right )+\frac{1}{2}\left ( 5.25\right )t^2[/tex]
[tex]t^2=66.667[/tex]
t=8.164 sec