Answer:
a) 280MPa
b) -100MPa
c) -0.35
d) 380 MPa
Explanation:
GIVEN DATA:
mean stress [tex]\sigma_m = 90MPa[/tex]
stress amplitude [tex]\sigma_a = 190MPa[/tex]
a) [tex]\sigma_m =\frac{\sigma_max+\sigma_min}{2}[/tex]
[tex]90 =\frac{\sigma_{max}+\sigma_{min}}{2}[/tex] --------------1
[tex]\sigma_a =\frac{\sigma_{max}-\sigma_{min}}{2}[/tex]
[tex] 190 = \frac{\sigma_{max}-\sigma_{min}}{2}[/tex] -----------2
solving 1 and 2 equation we get
[tex]\sigma_{max} = 280MPa[/tex]
b) [tex]\sigma_{min} = - 100MPa[/tex]
c)
stress ratio[tex] =\frac{\sigma_{min}}{\sigma_{max}}[/tex]
[tex]=\frac{-100}{280} = -0.35[/tex]
d)magnitude of stress range
[tex]=(\sigma_{max} -\sigma_{min})[/tex]
= 280 -(-100) = 380 MPa