An air-standard Otto cycle has a compression ratio of 8, and the temperature and pressure at the beginning of the compression process are 520°R and 14.2 lbf/in.2, respectively. The mass of air is 0.0015 lb. The heat addition is 0.9 Btu. Determine (a) the maximum temperature, in °R. (b) the maximum pressure, in lbf/in.2 (c) the thermal efficiency

Respuesta :

Answer:

a)[tex]T_3=4194.64R[/tex]

b) [tex]P_3=916.21lbf/in^2[/tex]

c)[tex]\eta=0.56[/tex]

Explanation:

Given that

Compression ratio(r)=8

We know that [tex]r=\dfrac{V_1}{V_2}[/tex]

[tex]P_=14.2lbf/in^2,T_1=520R[/tex]

mass of air =0.0015 lb

Heat addition=0.9 btu

[tex]T_2=r^{\gamma-1}T_1[/tex]

So

[tex]T_2=8^{1.4-1}\times 520[/tex]

[tex]T_2=1194.64R[/tex]

To find maximum temperature

We know that heat added at constant volume in petrol cycle

[tex]Q=mC_v(T_3-T_2)[/tex]

[tex]0.9 =.0015\times (T_3-T_2)\times 0.21[/tex]

[tex]0.9 =.0015\times (T_3-1194.64)\times 0.21[/tex]

[tex]T_3=4194.64R[/tex]

To find maximum pressure

[tex]P_2=r^{\gamma}P_1[/tex]

[tex]P_2=8^{1.4}\times 14.2[/tex]

[tex]P_2=260.98lbf/in^2[/tex]

[tex]\dfrac{P_3}{P_2}=\dfrac{T_3}{T_2}[/tex]

So [tex]P_3=916.21lbf/in^2[/tex]

To find efficiency

[tex]\eta =1-\dfrac{1}{r^{\gamma-1}}[/tex]

[tex]\eta =1-\dfrac{1}{8^{1.4-1}}[/tex]

[tex]\eta=0.56[/tex]