Evaluate the line integral, where C is the given curve. (x + 4y) dx + x2 dy, C C consists of line segments from (0, 0) to (4, 1) and from (4, 1) to (5, 0)

Respuesta :

Parameterize the line segments (call them [tex]C_1[/tex] and [tex]C_2[/tex], respectively, by

[tex]\vec r_1(t)=(1-t)(0,0)+t(4,1)=(4t,t)[/tex]

[tex]\vec r_2(t)=(1-t)(4,1)+t(5,0)=(4+t,1-t)[/tex]

both with [tex]0\le t\le1[/tex]. Then

[tex]\displaystyle\int_C(x+4y)\,\mathrm dx+x^2\,\mathrm dy[/tex]

[tex]=\displaystyle\int_0^1\bigg((4t+4t)(4)+(4t)^2(1)\bigg)\,\mathrm dt+\int_0^1\bigg((4+t+4(1-t))(1)+(4+t)^2(-1)\bigg)\,\mathrm dt[/tex]

[tex]=\displaystyle\int_0^115t^2+21t-8\,\mathrm dt=\boxed{\frac{15}2}[/tex]