An ordinary workshop grindstone has a radius of 7.50 cm and rotates at 6500 rev/min. (a) Calculate the magnitude of the centripetal acceleration at its edge in meters per second squared and convert it to multiples of g.

Respuesta :

Answer:

[tex]3.48\cdot 10^4 m/s^2, 3542 g[/tex]

Explanation:

First of all, we need to convert the angular velocity into rad/s:

[tex]\omega = 6500 \frac{rev}{min} \cdot \frac{2\pi rad/rev}{60 s/min}=680.7 rad/s[/tex]

Now we can calculate the centripetal acceleration at the edge of the grindstone, given by

[tex]a=\omega^2 r[/tex]

where

r = 7.50 cm = 0.075 m is the radius

Substituting,

[tex]a=(680.7)^2(0.075)=3.48\cdot 10^4 m/s^2[/tex]

And since

[tex]g=9.81 m/s^2[/tex]

The centripetal acceleration expressed in multiples of g is

[tex]a=\frac{3.48\cdot 10^4}{9.81}=3542g[/tex]