Answer:
f(x)=[tex]-x^2-2x+3[/tex]-Garph II
f(x)=[tex]x^2-4x+5[/tex]-Graph I
f(x)=[tex]x^2-6x+5[/tex]-Graph III
Step-by-step explanation:
We are given that
f(x)=[tex]-x^2+2x-3[/tex]
If substitute x=0 then we get f(0)=-3
It means y- intercept =-3
In given graph , there is no y- intercept=-3
It is false.
f(x)=[tex]-x^2-2x+3[/tex]
If substitute x=0 the we get
f(0)=3
In second graph y - intercept =3
Substitute x=-1 then we get
f(-1)=-1+2+3=4
Hence, the function match with second graph.
f(x)=[tex]x^2-4x+5[/tex]
If x=0 then we get
y- intercept =5
If we substitute x=2 then we get
f(1)=4-8+5=1
Hence, function match with First graph.
In third graph
Y- intercept =5
The vertices of parabola is (3,-4)
f(x)=[tex]x^2-6x+5[/tex]
If substitute x=0 then we get
y intercept =5
If we substitute x=3
Then we get
f(3)=[tex]3^2-6(3)+5[/tex]
f(3)=9-18+5=-4
Hence, the function match with third graph.