Explanation:
Given that,
Mass of arrow = 0.088 kg
Force = 110 N
Distance = 0.78 m
(a). We need to calculate the acceleration
Using newton's second law
[tex]F= ma[/tex]
[tex]a=\dfrac{F}{m}[/tex]
[tex]a=\dfrac{110}{0.088}[/tex]
[tex]a=1250\ m/s^2[/tex]
We need to calculate the velocity of the arrow
Using equation of motion
[tex]v^2=u^2+2as[/tex]
Where, a = acceleration
s = distance
Put the value in the equation
[tex]v^2=2\times1250\times0.78[/tex]
[tex]v=44.16\ m/s[/tex]
(b). We need to calculate the velocity of the arrow
Using work energy theorem
[tex]W=\Delta K.E[/tex]
[tex]F\times\Delta x=K.E_{f}-K.E_{i}[/tex]
Here, initial kinetic energy is zero
So,
[tex]F\times\Delta x=\dfrac{1}{2}mv^2[/tex]
[tex]v^2=\dfrac{2F\times\Delta x}{m}[/tex]
[tex]v=\sqrt{\dfrac{2F\times\Delta x}{m}}[/tex]
Put the value into the formula
[tex]v=\sqrt{\dfrac{2\times110\times0.78}{0.088}}[/tex]
[tex]v=44.16\ m/s[/tex]
Hence, This is the required solution.