Respuesta :

Answer: 0.336 m

Explanation:

This situation is a good example of the parabolic motion, in which the travel of the squirrel has two components: x-component and y-component. Being their main equations as follows:

x-component:

[tex]x=V_{o}cos\theta t[/tex]   (1)

[tex]V_{x}=V_{o}cos\theta[/tex]   (2)

Where:

[tex]V_{o}=4m/s[/tex] is the squirrel's initial speed

[tex]\theta=40\°[/tex] is the angle at which the squirrel jumps into the air

[tex]t[/tex] is the time since the bullet is shot until it hits the ground

y-component:

[tex]y=y_{o}+V_{o}sin\theta t-\frac{gt^{2}}{2}[/tex]   (3)

[tex]V_{y}=V_{o}sin\theta-gt[/tex]   (4)

Where:

[tex]y_{o}=0m[/tex]  is the initial height of the squirrel

[tex]y=0[/tex]  is the final height of the squirrel (when it finally hits the ground)

[tex]g=9.8m/s^{2}[/tex]  is the acceleration due gravity

Now, we have to find the maximum height [tex]y_{max}[/tex] reached by the squirrel, and this happens when [tex]V_{y}=0[/tex]. So equation (2) is rewritten as:

[tex]V_{y}=0=V_{o}sin\theta-gt[/tex]  (5)

[tex]gt=V_{o}sin\theta[/tex]  (6)

[tex]t=\frac{V_{o}sin\theta}{g}[/tex]  (7)

Solving (7):

[tex]t=\frac{(4m/s)(sin 40\°)}{9.8m/s^{2}}[/tex]  (8)

[tex]t=0.262s[/tex]  (9)

Substituting the value of [tex]t[/tex] (9) in (3):

[tex]y_{max}=0+(4m/s)(sin 40\°)(0.262s) - \frac{9.8m/s^{2}{(0.262s)}^{2}}{2}[/tex]   (10)

Finally:

[tex]y_{max}=0.336m[/tex]   (11)

Answer:

0.34 m

Explanation:

Apex ; good luck yall! :)