Answer:
Acceleration, a = 1.1 m/s²
Explanation:
Frequency of source, [tex]f_s=10^4\ Hz[/tex]
Speed of sound, v = 343 m/s
Frequency of observer, [tex]f_o=9952\ Hz[/tex]
We know that acceleration a of the platform is :
[tex]a=\dfrac{v_2-v_1}{t_2-t_1}[/tex]..............(1)
The frequency detected by the microphone is :
At 1.5 seconds,
[tex]f_o=f_s(1-\dfrac{v_2}{v})[/tex]
[tex]v_2=v(1-\dfrac{f_o}{f_s})[/tex]
[tex]v_2=343\times (1-\dfrac{9952}{10000})[/tex]
[tex]v_2=1.64\ m/s[/tex]
At 3.5 seconds,
[tex]f_o=f_s(1-\dfrac{v_2}{v})[/tex]
[tex]v_2=v(1-\dfrac{f_o}{f_s})[/tex]
[tex]v_2=343\times (1-\dfrac{9888}{10000})[/tex]
[tex]v_2=3.84\ m/s[/tex]
So, equation (1) becomes :
[tex]a=\dfrac{3.84-1.64}{3.5-1.5}[/tex]
[tex]a=1.1\ m/s^2[/tex]
So, the acceleration of the platform is 1.1 m/s². Hence, this is the required solution.