Respuesta :

Answer:

[tex]V=400\ cm^{3}[/tex]

Step-by-step explanation:

we know that

The volume of a pyramid is equal to

[tex]V=\frac{1}{3}BH[/tex]

where

B is the area of the square base

H is the height of the pyramid

Find the area of the square base B

[tex]B=b^{2}[/tex]

[tex]b=10\ cm[/tex]

[tex]B=10^{2}=100\ cm^{2}[/tex]

Find the height H of the pyramid

Applying the Pythagoras Theorem

[tex]l^{2}=H^{2}+(b/2)^{2}[/tex]

we have

[tex]b=10\ cm[/tex]

[tex]l=13\ cm[/tex]

substitute

[tex]13^{2}=H^{2}+(10/2)^{2}[/tex]

[tex]169=H^{2}+25[/tex]

[tex]H^{2}=169-25[/tex]

[tex]H^{2}=144[/tex]

[tex]H=12\ cm[/tex]

Find the volume

[tex]V=\frac{1}{3}(100)(12)[/tex]

[tex]V=400\ cm^{3}[/tex]

Answer:

v=400 cm3

Step-by-step explanation: