Find the standardized test statistic to test the claim that μ 1≠ μ 2. Two samples are randomly selected from each population. The sample statistics are given below. Use α = 0.02. n 1 = 51 n 2 = 38 1 = 3.3 2 = 3.7 s 1 = 0.76 s 2 = 0.51

Respuesta :

Answer:

The value of standardized test statistic -2.97.

Step-by-step explanation:

Given information: [tex]\alpha =0.02[/tex], [tex]n_1=51[/tex], [tex]n_2=38[/tex], [tex]\overline{x}_1=3.3[/tex], [tex]\overline{x}_2=3.7[/tex], [tex]s_1=0.76[/tex],[tex]s_2=0.51[/tex].

Null hypothesis:

[tex]H_0:\mu_1=\mu_2[/tex]

Alternative hypothesis:

[tex]H_1:\mu_1\neq \mu_2[/tex]

The formula for standardized test statistic is

[tex]t=\frac{(\overline{x}_1-\overline{x}_2)-(\mu_1-\mu_2)}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}}[/tex]

The value of for standardized test statistic is

[tex]t=\frac{\left(3.3-3.7\right)-(0)}{\sqrt{\frac{\left(0.76\right)^2}{51}+\frac{\left(0.51\right)^2}{38}}}[/tex]

[tex]t=\frac{\left(3.3-3.7\right)-(0)}{\sqrt{\frac{\left(0.76\right)^2}{51}+\frac{\left(0.51\right)^2}{38}}}[/tex]

[tex]t=-2.96742543164[/tex]

[tex]t\approx -2.97[/tex]

Therefore the value of standardized test statistic -2.97.