Respuesta :

frika

Answer:

7. [tex]x\le 8[/tex]

8. [tex]x\le 1.7[/tex]

9. [tex]-0.2\le x\le 2[/tex]

10. [tex]3< x\le 4[/tex]

Step-by-step explanation:

7. Solve for x:

[tex]4x+7-x\le 31[/tex]

Separate variable and numbers into different sides of inequality:

[tex]4x-x\le 31-7\\ \\3x\le 24[/tex]

Divide the inequality by 3:

[tex]x\le 8[/tex]

8. Solve for x:

[tex]2(x-3)+8x\le 11[/tex]

Eliminate the brackets:

[tex]2x-6+8x\le 11[/tex]

Separate variable and numbers into different sides of inequality:

[tex]2x+8x\le 11+6\\ \\10x\le 17[/tex]

Divide the inequality by 10:

[tex]x\le 1.7[/tex]

9. Solve for x:

[tex]-7x\le 3x+2\le 8[/tex]

Solve two inequalities [tex]-7x\le 3x+2[/tex] and [tex]3x+2\le 8[/tex] separately:

[tex]-7x\le 3x+2\\ \\3x+2\ge -7x\\ \\3x+7x\ge -2\\ \\10x\ge -2\\ \\x\ge -0.2[/tex]

and

[tex]3x+2\le 8\\ \\3x\le 8-2\\ \\3x\le 6\\ \\x\le 2[/tex]

So,

[tex]-0.2\le x\le 2[/tex]

10. Solve for x:

[tex]8<3x-1\le 11[/tex]

Add 1:

[tex]8+1<3x\le 11+1\\ \\9<3x\le 12[/tex]

Divide by 3:

[tex]3< x\le 4[/tex]

I answered all questions in the attached image. Remember that solving inequalities is very similar to solving equations. Just remember to change the sign when you divide by a negative number.
Also, when dealing with compound inequalities, you need to split them up and solve for x. This is demonstrated in the attached image.
Ver imagen yungsherman