Respuesta :
[tex]\log x + \log y = \log\dfrac{1}{x}\\\\\log y = \log\dfrac{1}{x}-\log x\\\\\log y = \log\dfrac{1}{x^2}\\\\y=\dfrac{1}{x^2}[/tex]
Answer:
y = 1/x^2.
Step-by-step explanation:
log x + log y = log(1/x)
log y = log(1/x) - log x
Using the rule log a - log b = log a/b, we have:
log y = log ( 1/x / x)
log y = log (1/x^2)
So y = 1/x^2.