Respuesta :

Answer:

the area, in square units, of this polygon is 36 units2

Answer:

The area of the given Polygon is:

                        [tex]36\ unit^2[/tex]

Step-by-step explanation:

The polygon is in the shape of the trapezoid with two bases AB and CD and altitude as: AD

Now we know that the area of trapezoid is given by:

[tex]\text{Area}=\dfrac{1}{2}\times (\text{Sum of bases})\times \text{Altitude}[/tex]

i.e.

Here

[tex]\text{Area}=\dfrac{1}{2}\times (AB+CD)\times AD[/tex]

Now, we find the length of AB,CD and AD using distance formula.

A is located at (-2,5)

B at (3,5)

C at (5,-1)

D at (-2,-1)

[tex]AB=\sqrt{(-2-3)^2+(5-5)^2}\\\\i.e.\\\\AB=\sqrt{(-5)^2+0^2}\\\\i.e.\\\\AB=\sqrt{25}\\\\i.e.\\\\AB=5\ units[/tex]

[tex]CD=\sqrt{(5-(-2))^2+((-1)-(-1))^2}\\\\i.e.\\\\CD=\sqrt{7^2+0^2}\\\\i.e.\\\\CD=7\ units[/tex]

[tex]AD=\sqrt{(-2-(-2))^2+(5-(-1))^2}\\\\i.e.\\\\AD=\sqrt{0^2+6^2}\\\\i.e.\\\\AD=6\ units[/tex]

Hence, the area of  Trapezoid is:

[tex]Area=\dfrac{1}{2}\times (5+7)\times 6\\\\i.e.\\\\Area=36\ unit^2[/tex]

Ver imagen lidaralbany