Respuesta :

Answer:

29.31 m

Explanation:

It is given that flow rate Q =6.0 ltrs/minute [tex]=\frac{6}{1000\times 60}[/tex] [tex]m^3/sec[/tex]

Diameter =10 mm

So radius =  [tex]\frac{10}{2}=5 mm=5\times 10^{-3}m[/tex]

Area of duct [tex]A=\pi r^2=3.14\times(5\times 10^{-3})^2=7.854 \times 10^{-5}m^2[/tex]

Average velocity [tex]v=\frac{Q}{A}=\frac{10^{-4}}{7.854\times 10^{-5}}=1.372 m/sec[/tex]

The given Reynolds number is 1800 which is less than 2000 so it will be a laminar flow

So Reynolds number friction factor [tex]f=\frac{64}{1800}=0.0356[/tex]

So head loss ifs given by [tex]\frac{fLv_{avg}^2}{d\times 2\times g}=\frac{0.0356\times 100\times 1.732^2}{10\times 10^{-3}\times 2\times 9.81}=29.39\ m[/tex]