A fluid of density 900 kg/m3 passes through a converging section of an upstream diameter of 50 mm and a downstream diameter of 25 mm. Pressure difference across the area reduction is - 40 kN/m2 Determine the downstream velocity and the volume flow rate if the flow is ideal. i. Determine the downstream velocity if the flow is not ideal and has a velocity coefficient of Cy = 0.89.

Respuesta :

Answer:

Q= 4.6 × 10⁻³ m³/s

actual velocity will be equal to 8.39 m/s

Explanation:

density of fluid = 900 kg/m³

d₁ = 0.025 m

d₂ = 0.05 m

Δ P = -40 k N/m²

C v = 0.89

using energy equation

[tex]\dfrac{P_1}{\gamma}+\dfrac{v_1^2}{2g} = \dfrac{P_2}{\gamma}+\dfrac{v_2^2}{2g}\\\dfrac{P_1-P_2}{\gamma}=\dfrac{v_2^2-v_1^2}{2g}\\\dfrac{-40\times 10^3\times 2}{900}=v_2^2-v_1^2[/tex]

under ideal condition v₁² = 0

v₂² = 88.88

v₂ = 9.43 m/s

hence discharge at downstream will be

Q = Av

Q = [tex]\dfrac{\pi}{4}d_1^2 \times v[/tex]

Q = [tex]\dfrac{\pi}{4}0.025^2 \times 9.43[/tex]

Q= 4.6 × 10⁻³ m³/s

we know that

[tex]C_v =\dfrac{actual\ velocity}{theoretical\ velocity }\\0.89 =\dfrac{actual\ velocity}{9.43}\\actual\ velocity = 8.39m/s[/tex]

hence , actual velocity will be equal to 8.39 m/s