Air at 10 atm and 25°C flows with free stream velocity of 6 m/s over a flat plate at 75°C. Deter- mine the heat flux at 0.05 m intervals upto a distance where the Reynolds number is 5 x 10^5.

Respuesta :

Answer:

[tex]q=11.37 \frac{KW}{m^2}[/tex]

Explanation:

Given that velocity=6 m/s

Temperature of surface=75 °C

Temperature of air=25 °C

Reynolds number =[tex]5\times 10^5[/tex]

It means that this is laminar flow.So Nusselt equation given as follows

[tex]Nu=0.644Re^{\frac{1}{2}}Pr^{\frac{1}{3}}[/tex]

Now properties of air at mean temperature of 75 °C and 25 °C (50 °C) is taken from standard table

K=0.028 W/m-K,Pr=0.71

And we also know that

[tex]Nu=\dfrac{hL_c}{K}[/tex]

Now by putting the values

[tex]Nu=0.644\times (5\times 10^5)^{\frac{1}{2}}\times 0.71^{\frac{1}{3}}[/tex]

Nu=406.24

[tex]406.24=\dfrac{h\times 0.05}{0.028}[/tex]

[tex]h=227.49 \frac{W}{m^2K}[/tex]

So heat flux q= hΔT

q=227.49  x (75-25)

[tex]q=11.37 \frac{KW}{m^2}[/tex]