Respuesta :

For this case we have the following function:

[tex]f (x) = 4 (3x-5)[/tex]

We find the inverse of the function f - 1 (x):

We change[tex]f (x)[/tex] by y:

[tex]y = 4 (3x-5)[/tex]

We exchange the variables:

[tex]x = 4 (3y-5)[/tex]

We cleared "y":

[tex]3y-5 = \frac {x} {4}[/tex]

We add 5 to both sides:

[tex]3y = \frac {x} {4} +5[/tex]

We divide between 3 on both sides:

[tex]y = \frac {x} {12} + \frac {5} {3}[/tex]

We change y for [tex]f^{-1}(x)[/tex]:

[tex]f ^{-1}(x) = \frac {x} {12} + \frac {5} {3}[/tex]

Answer:

[tex]f ^{-1}(x) = \frac {x} {12} + \frac {5} {3}[/tex]