Respuesta :

[tex]\mathrm dx+(x\cot y+\sin y)\,\mathrm dy=0[/tex]

Multiply both sides by [tex]\sin y[/tex]:

[tex]\sin y\,\mathrm dx+(x\cos y+\sin^2y)\,\mathrm dy=0[/tex]

The ODE is now exact, since

[tex]\dfrac{\partial(\sin y)}{\partial y}=\cos y[/tex]

[tex]\dfrac{\partial(x\cos y+\sin^2y)}{\partial x}=\cos y[/tex]

so there exists a solution of the form [tex]\Psi(x,y)=C[/tex]. This solution satisfies

[tex]\dfrac{\partial\Psi}{\partial x}=\sin y[/tex]

[tex]\dfrac{\partial\Psi}{\partial y}=x\cos y+\sin^2y[/tex]

Integrating both sides of the first PDE wrt [tex]x[/tex] gives

[tex]\Psi(x,y)=x\sin y+f(y)[/tex]

and differentiating wrt [tex]y[/tex] gives

[tex]\dfrac{\partial\Psi}{\partial y}=x\cos y+\sin^2y=x\cos y+\dfrac{\mathrm df}{\mathrm dy}[/tex]

[tex]\implies\dfrac{\mathrm df}{\mathrm dy}=\sin^2y=\dfrac{1-\cos2y}2[/tex]

[tex]\implies f(y)=\dfrac y2-\dfrac{\sin2y}4+C[/tex]

So the ODE has solution

[tex]\Psi(x,y)=x\sin y+\dfrac y2-\dfrac{\sin2y}4=C[/tex]

which can be rewritten and simplified as

[tex]\Psi(x,y)=\boxed{\sin y(2x-\cos y)+y=C}[/tex]