Respuesta :

Answer:

Check.

Step-by-step explanation:

To prove it we need to know that  for two matrices A and B we have that:

det(AB) = det(A)*det(B) and [tex]det(A^{-1}) = \frac{1}{det(A)}[/tex]. Now:

[tex]A = PDP^{-1}[/tex]

[tex]det(A) = det(PDP^{-1})[/tex]

[tex]det(A) = det(P)*det(D)*det(P^{-1})[/tex]

[tex]det(A) = det(P)*det(D)*\frac{1}{det(P)}[/tex]

[tex]det(A) = det(P)*\frac{1}{det(P)}*det(D)[/tex]

[tex]det(A) = det(D)[/tex].