Respuesta :

The ODE is exact, since

[tex](3y^2+\sec^2x)_y=6y[/tex]

[tex](6xy+y)_x=6y[/tex]

so there is a solution of the form [tex]\Psi(x,y)=C[/tex] satisfying

[tex]\Psi_x=3y^2+\sec^2x[/tex]

[tex]\Psi_y=6xy+y[/tex]

Integrating both sides of the first PDE wrt [tex]x[/tex] gives

[tex]\Psi=3xy^2+\tan x+f(y)[/tex]

and differentiating wrt [tex]y[/tex] gives

[tex]\Psi_y=6xy+y=6xy+f'(y)\implies f'(y)=y\implies f(y)=\dfrac{y^2}2+C[/tex]

Then

[tex]\Psi(x,y)=\boxed{3xy^2+\tan x+\dfrac{y^2}2=C}[/tex]