Answer:
[tex]\frac{dr}{dt}=0.01 [/tex]cm per second
[tex]\frac{dS}{dt}=320 square centimeter per second
Step-by-step explanation:
We are given that volume of sphere
[tex]V=\frac{4}{3}\pi r^3[/tex]
Volume of sphere is increasing at a constant rate
[tex]\frac{dV}{dt}=4[/tex] cubic centimeters per second
We have to find the rate of radius at which increasing
when r= 10 cm
Differentiating w.r.t time
[tex]\frac{dV}{dt}=\frac{4}{3}\pi\cdot3r^2\frac{dr}{dt}[/tex]
[tex]4=4 r^2\frac{dr}{dt}[/tex]
[tex]\frac{dr}{dt}= \frac{1}{r^2}=\frac}{1}{(10)^2}=0.01 [/tex] cm per second
Now ,we are given that surface area of sphere
[tex] S=4\pir^2[/tex]
Differentiate w.r.t time then we get
[tex]\frac{dS}[dt}=8\pir\frac{dr}{dt}[/tex]
[tex]\frac{dS}{dt}=8\pi\times 20\times 2[/tex]
[tex]\frac{dS}{dt}=320 [/tex]cm per second