Consider the following arithmetic sequence. 3, \frac{11}{2} , 8,

(a) Identify d and {a}^1 .

d =

{a}^1 =

(b) Write the next three terms.

{a}^4 =

{a}^5 =

{a}^6 =

Respuesta :

Answer:  (a) a = 3, and d=[tex]\dfrac{5}{2}[/tex]

(b) [tex]a_4=\dfrac{21}{2}\\\\a_5=13\\\\a_6=\dfrac{31}{2}[/tex]

Step-by-step explanation:

Since we have given that

Arithmetic sequence be

[tex]3,\dfrac{11}{2},8[/tex]

As we know that

a denotes the first term.

d denotes the common difference.

So, [tex]a^1=3\\\\d=a_2-a_1=\dfrac{11}{2}-3=\dfrac{11-6}{2}=\dfrac{5}{2}[/tex]

Hence, a = 3, and d=[tex]\dfrac{5}{2}[/tex]

[tex]a_4=a+3d=3+3\times\dfrac{5}{2}=3+\dfrac{15}{2}=\dfrac{6+15}{2}=\dfrac{21}{2}\\\\a_5=a+4d=3+4\times \dfrac{5}{2}=3+\dfrac{20}{2}=3+10=13\\\\a_6=a+5d=3+5\times \dfrac{5}{2}=3+\dfrac{25}{2}=\dfrac{6+25}{2}=\dfrac{31}{2}[/tex]

Hence, (b)

[tex]a_4=\dfrac{21}{2}\\\\a_5=13\\\\a_6=\dfrac{31}{2}[/tex]