Respuesta :

Answer:

[tex]${L}\{t^{-3/2}}\}$[/tex] does not exists

Step-by-step explanation:

First lets introduce the definition of the Laplace transform (unitary version):

[tex]$F(s) = \int\limits_0^\infty {f(t) e^{ - st} dt}$[/tex];

Let's demonstrate why [tex]${L}\{t^{-3/2}}\}$[/tex] does not exists:

[tex]$F(s) = \int\limits_0^\infty {t^{-3/2} e^{ - st} dt}$[/tex]

Writing st=u

⇒[tex]$F(s) = \int\limits_0^\infty {(u/s)^{-3/2} e^{ - u} {du/s}} = \int\limits_0^\infty {(s/u)^{3/2} e^{ - u} {du/s}} = s^{1/2} \int\limits_0^\infty {(1/u)^{3/2} e^{ - u} {du}} =$[/tex]

Where:

[tex]$\int\limits_0^\infty {(1/u)^{3/2} e^{ - u} {du}$ [/tex]

can be written as:

[tex]$\int\limits_0^\infty {u^{(-1/2)-1} e^{ - u} {du} = \Gamma (-1/2)$[/tex]

Where:

 [tex]$ \Gamma (z) = \int\limits_0^\infty {u^{z - 1} e^{ - u} du} $[/tex]

Is the Gamma Function

But:

[tex]$ \Gamma \left( z \right) $[/tex] ; is only defined for z>0

Getting Demonstrated that [tex]${L}\{t^{-3/2}}\}$[/tex] does not exists