Respuesta :

Answer:

[tex]y = \dfrac{t^3e^{2t}}{3}+Ce^{2t}[/tex].

Step-by-step explanation:

Using first order linear differential equation:

[tex]\dfrac{\mathrm{d} y}{\mathrm{d} t} = 2y + t^2[/tex]

[tex]\frac{\mathrm{d} y}{\mathrm{d} t} - 2y =t^2[/tex]

finding integrating factor:

I.F = [tex] e^{\int -2dt}[/tex]

I.F =[tex]e^{-2t}[/tex]

now,

[tex]y = \dfrac{1}{IF}(\int t^2dt+ c )[/tex]

[tex]y = \dfrac{1}{e^{-2t}}(\int t^2dt+ c )[/tex]

[tex]y = \dfrac{t^3e^{2t}}{3}+Ce^{2t}[/tex]

hence the solution is

[tex]y = \dfrac{t^3e^{2t}}{3}+Ce^{2t}[/tex]