Respuesta :

Answer:

[tex]x< \frac{45}{41}[/tex]  or [tex]x< 1.098[/tex]

The graph in the attached figure

Step-by-step explanation:

we have

[tex]0.2x-2 < 7-8x[/tex]

Solve for x

Adds 2 both sides

[tex]0.2x-2+2 < 7-8x+2[/tex]

[tex]0.2x < 9-8x[/tex]

Adds 8x both sides

[tex]0.2x+8x < 9-8x+8x[/tex]

[tex]8.2x < 9[/tex]

Divide by 8.2 both sides

[tex]x < 9/8.2[/tex]

Remember that

[tex]8.2=82/10[/tex]

substitute

[tex]x < 9/(82/10)[/tex]

[tex]x< \frac{90}{82}[/tex]

Simplify

[tex]x< \frac{45}{41}[/tex]  or [tex]x< 1.098[/tex]

The solution is the interval ------> (-∞, 45/41)

All real numbers less than 45/41

In a number line , the solution is the shaded area at left of x=45/41 (open circle)

The graph in the attached figure

Ver imagen calculista