Respuesta :

Explanation:

It is given that the total volume is (10 mL + 60 mL) = 70 mL.

Also, it is known that [tex]M_{1}V_{1}[/tex] = [tex]M_{2}V_{2}[/tex]

Where,    [tex]V_{1}[/tex] = total volume

               [tex]V_{2}[/tex] = initial volume

Therefore, new concentration of [tex]CH_{3}COOH[/tex] = [tex]\frac{M_{2}V_{2}}{V_{1}}[/tex]

                                        = [tex]\frac{60 \times 0.5}{70}[/tex]

                                        = 0.43 M

New concentration of NaOH = [tex]\frac{M_{2}V_{2}}{V_{1}}[/tex]

                                               = [tex]\frac{10 \times 1.0}{70}[/tex]

                                               = 0.14 M

So, the given reaction will be as follows.

              [tex]CH_{3}COOH + OH^{-} \rightarrow CH_{3}COO^{-} + H_{2}O[/tex]

Initial:             0.43          0.14                     0

Change:          -0.14        -0.14                    0.14

Equilibrium:    0.29          0                       0.14

As it is known that value of [tex]pK_{a}[/tex] = 4.74

Therefore, according to Henderson-Hasselbalch equation calculate the pH as follows.

           pH = [tex]pK_{a} + log \frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}[/tex]

                 = [tex]4.74 + log \frac{0.14}{0.29}[/tex]

                 = 4.74 + (-0.316)

                 = 4.42

Therefore, we can conclude that the pH of given reaction is 4.42.