Nernst Equation – For the following reaction:

Mn (s) + Cr3+ (aq) ? Mn2+ (aq) + Cr (s)

(a) Write the three balanced equations (each half-cell and the overall):

(b) What is the standard cell potential (E°cell) for this Mn/Cr cell?

(c) What will be the cell potential when [Mn2+] = 0.20 M and [Cr3+] = 1.0 × 10-4 M ?

(d) What will be the cell potential when [Mn2+] = 1.0 × 10-4 M and [Cr3+] = 0.20 M ?

Respuesta :

Answer:

For a: The reactions are written below.

For b: The standard cell potential of the given cell is +0.44 V.

For c: The cell potential for the given values is 0.408 V

For d: The cell potential for the given values is 0.4724 V.

Explanation:

The given cell is:

[tex]Mn(s)/Mn^{2+}||Cr^{3+}/Cr(s)[/tex]

  • For a:

Half reactions for the given cell follows:

Oxidation half reaction: [tex]Mn(s)\rightarrow Mn^{2+}(aq.)+2e^-;E^o_{Mn^{2+}/Mn}=-1.18V[/tex]       (  ×  3)

Reduction half reaction: [tex]Cr^{3+}(aq.)+3e^-\rightarrow Cr(s);E^o_{Cr^{3+}/Cr}=-0.74V[/tex]       (  ×  2)

Net reaction: [tex]Mn(s)+Cr^{3+}(aq.)\rightarrow Mn^{2+}(aq.)+Cr(s)[/tex]

  • For b:

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:

[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]

Putting values in above equation, we get:

[tex]E^o_{cell}=-0.74-(-1.18)=0.44V[/tex]

Hence, the standard cell potential of the given cell is 0.44 V

  • For c:

To calculate the EMF of the cell, we use the Nernst equation, which is:

[tex]E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[Mn^{2+}]}{[Cr^{3+}]}[/tex]

where,

[tex]E_{cell}[/tex] = electrode potential of the cell = ?V

[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +0.44 V

n = number of electrons exchanged = 6

[tex][Cr^{3+}]=1.0\times 10^{-4}M[/tex]

[tex][Mn^{2+}]=0.20M[/tex]

Putting values in above equation, we get:

[tex]E_{cell}=0.44-\frac{0.059}{6}\times \log(\frac{0.20}{1.0\times 10^{-4}})\\\\E_{cell}=0.408V[/tex]

Hence, the EMF of the cell for the given concentration is 0.408 V.

  • For d:

To calculate the EMF of the cell, we use the Nernst equation, which is:

[tex]E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[Mn^{2+}]}{[Cr^{3+}]}[/tex]

where,

[tex]E_{cell}[/tex] = electrode potential of the cell = ?V

[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +0.44 V

n = number of electrons exchanged = 6

[tex][Cr^{3+}]=0.20M[/tex]

[tex][Mn^{2+}]=1.0\times 10^{-4}M[/tex]

Putting values in above equation, we get:

[tex]E_{cell}=0.44-\frac{0.059}{6}\times \log(\frac{1.0\times 10^{-4}}{0.20})\\\\E_{cell}=0.4724V[/tex]

Hence, the EMF of the cell for the given concentration is 0.4724 V.