Respuesta :

Answer:

599/2

Step-by-step explanation:

[tex]\log(2x+1)-\log(6)=2[/tex]

I'm going to use quotient rule which says: [tex]\log(\frac{q}{p})=\log(q)-\log(p)[/tex]:

[tex]\log(\frac{2x+1}{6})=2[/tex]

Now we are going write this in equivalent expontial form.  That is, [tex]\log_b(a)=y[/tex] implies [tex]b^y=a[/tex].

Writing in exponetial form:

[tex]10^2=\frac{2x+1}{6}[/tex]

[tex]100=\frac{2x+1}{6}[/tex]

Multiply both sides by 6:

[tex]600=2x+1[/tex]

Subtract 1 on both sides:

[tex]599=2x[/tex]

Divide both sides by 2:

[tex]\frac{599}{2}=x[/tex]

When it comes to logarithms, you should check your solution(s).

[tex]\log(2 \cdot \frac{599}{2}+1)-\log(6)=2[/tex]

[tex]\log(599+1)-\log(6)=2[/tex]

[tex]\log(600)-\log(6)=2[/tex]

[tex]\log(\frac{600}{6})=2[/tex]

[tex]\log(100)=2[/tex]

[tex]2=2[/tex]

The solution checks out.

Answer:

x=299.5

Step-by-step explanation:

I will convert log(6) to its decimal form

[tex]log(2x+1)-log(6)=2\\\\log(2x+1)-0.778151=2[/tex]

Step 1: Add 0.778151 to both sides.

[tex]log(2x+1)-0.778151+0.778151=2+0.778151\\\\log(2x+1)=2.778151[/tex]

Step 2: Solve Logarithm.

[tex]log(2x+1)=2.778151\\\\10^{log(2x+1)}=10^{102.778151}[/tex] Take the exponent of both sides.

[tex]2x+1=102.778151\\\\2x+1=599.999654\\\\2x+1-1=599.999654-1[/tex]

Subtract 1 from both sides.

[tex]2x=598.999654\\\\\\\frac{2x}{2}=\frac{598.999654}{2}[/tex]

Divide both sides by 2.

[tex]x=299.5[/tex]