Respuesta :
Answer:
1) [tex][Ba(CH_3COO)_2]=0.1545 mol/L[/tex]
[tex][Ba^{2+}]=0.1545 mol/L[/tex]
[tex][CH_3COO^-]=0.3090 mol/L[/tex]
2) 21.72 grams of iron(II) sulfate that must be added.
Explanation:
[tex]Molarity=\frac{\text{Moles of compound}}{\text{Volume of solution (L)}}[/tex]
1) Moles of barium acetate = [tex]\frac{19.7 g}{255 g/mol}=0.07725 mol[/tex]
Volume of the solution was made to 500 ml that 0.5 L
[tex][Ba(CH_3COO)_2]=\frac{0.07725 mol}{0.5L}=0.1545 mol/L[/tex]
In 1 mole of barium acetate there are 1 mole of barium ions and 2 moles of acetate ions.
[tex][Ba^{2+}]=1\times [Ba(CH_3COO)_2][/tex]
[tex][Ba^{2+}]=1\times 0.1545 mol/L=0.1545 mol/L[/tex]
[tex][CH_3COO^-]=2\times [Ba(CH_3COO)_2][/tex]
[tex][CH_3COO^-]=2\times 0.1545 mol/l=0.3090 mol/L[/tex]
2) Moles of iron(II) sulfate be n
Volume of the solution = 300 mL= 0.3 L
[tex][Fe_2(SO_4)_3]=0.181 M[/tex]
[tex]0.181 M=\frac{n}{0.3 L}[/tex]
n = 0.0543 moles
Mass of 0.0543 moles of iron(II) sulfate:
0.0543 mol × 400 g/mol = 21.72 g
21.72 grams of iron(II) sulfate that must be added.