Respuesta :

Answer:

(-1,-6)

Step-by-step explanation:

[tex]f(x)=x^2+6x+3[/tex]

[tex]g(x)=f(x-2)[/tex]

[tex]g(x)=(x-2)^2+6(x-2)+3[/tex]  (Replaced x in f with (x-2))

[tex]g(x)=x^2-4x+4+6x-12+3[/tex] (Used [tex](x+b)^2=x^2+2bx+b^2[/tex] and distributive property)

[tex]g(x)=x^2-4x+6x+4-12+3[/tex] (Gathered like terms)

[tex]g(x)=x^2+2x-5[/tex]  (Simplified)

The vertex of a parabola occurs at [tex](\frac{-b}{2a},g(\frac{-b}{2a})[/tex].

Let's find [tex]\frac{-b}{2a}[/tex] first.

[tex]\frac{-2}{2(1)}=-1[/tex]

Now we can obtain [tex]g(\frac{-b}{2a})[/tex] which is [tex]g(-1)[/tex] in this case:

[tex]g(x)=x^2+2x-5[/tex]

[tex]g(-1)=(-1)^2+2(-1)-5[/tex]

[tex]g(-1)=1-2-5[/tex]

[tex]g(-1)=-1-5[/tex]

[tex]g(-1)=-6[/tex].

The vertex is (-1,-6).

Answer:

(-5,-6)

Step-by-step explanation:

just took the test and got it right